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Abstract—We describe an automated detection algorithm
that may be used to identify the percussion peak (P), tidal
peak (T), dichrotic notch (N), and dichrotic peak (D) com-
ponents of the intracranial pressure (ICP) signal. The algo-
rithm uses a moving average filter to remove quantization
error, a lowpass filter to identify the beat series, and a lo-
cal search to identify the components of each beat. The
algorithm was compared with two experts’ visual identifi-
cation of the percussion components of 997 beats recorded
from three subjects. The algorithm accuracy rate was 99.3%
with an acceptance interval of 8 ms (±1 sample).

Keywords—Physiologic Beat Detection, Intracranial pres-
sure

I. Introduction

Traumatic brain injury (TBI) remains a significant cause
of mortality and morbidity in both children and adults [1].
Severe TBI often leads to increased intracranial pressure
(ICP) that may result in worsening brain injury and out-
come. Current methods of ICP signal analysis are based on
time- or frequency-domain metrics such as mean, standard
deviation, peak amplitude, histograms, and power spectral
density [2]. Few investigators have analyzed variations in
the morphology of the ICP signal because they lack detec-
tion algorithms that can automatically identify each of the
beat components.
There is a periodic beat in the ICP signal that corre-

sponds with each heart beat and pulse in arterial blood
pressure. Each beat in the ICP signal is composed of
four components: a percussion peak(P), a tidal peak(T), a
dichrotic notch (N), and a dichrotic peak (D). Fig. 1 shows
an example of these four components identified in an ICP
signal. An accurate and automated extraction algorithm
would enable investigators to characterize the shape of the
ICP signal, including the beat-to-beat interval data and the
relative changes in amplitude between peaks. Fig. 2 shows
an example of some of the signal metrics that could be used
to characterize the signal components. We describe a fully
automatic ICP beat detection algorithm that locates each
PTND component.

II. Methodology

A. ICP Monitoring and Data Acquisition

For this study, we detected the beat components in sub-
jects with severe traumatic brain injuries from the Pedi-
atric Intensive Care Unit, Doernbecher Children’s Hospi-
tal. This study was reviewed and approved by the Institu-
tional Review Board of Oregon Health and Science Univer-
sity, and the requirement for informed consent was waived.
ICP was monitored continuously using either a ventricu-
lar catheter or parenchymal fiber-optic pressure transducer
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Fig. 1. Example of the PTND components of an ICP signal versus
time as labeled by an expert. Not all of the components can be clearly
identified for each beat. Note that only the percussion (P) component
can be identified in the last beat.
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Fig. 2. Plot of the intracranial pressure versus time during two heart
beats. This figure also illustrates the signal metrics that can be used
for further studies once the PTND components are detected for each
beat. These metrics include the intervals and relative amplitudes of
each pair of the PTND components. In this example, the tidal peak
is absent.

(Integra NeuroCare, Integra LifeSciences, Plainsboro, NJ).
The ICP monitor was connected to an Agilent Merlin pa-
tient monitor (Agilent, Palo Alto, CA) which sampled the
ICP signals at 125 Hz. An HPUX workstation automati-
cally acquired these signals through a serial data network,
and they were stored in files containing six-hour epochs on
CD-ROM [3].
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Fig. 3. Block diagram of the automatic detection algorithm showing
each of the four stages.
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Fig. 4. Example of how the different stages of the detection algorithm
locate the percussion peaks in the ICP signal. The dichrotic peak in
the second beat cannot be precisely located in the raw signal due to
quantization error, but it can be accurately identified after smoothing
with the moving average filter.

B. Detector Description

The PNTD detector is divided into four stages, as shown
in Fig. 3. The following sections describes each of these
stages in detail.

B.1 Stage 1: Lowpass Filter

Before the algorithm identifies each component of the
PTND complex, it first coarsely locates each heart beat.
To simplify this task, the signal is filtered with a moving
average filter. This reduces the effect of high-frequency
noise due to patient movement and other external sources.
The moving average is calculated using 30 samples (0.25 s)
and the signal is filtered forward and backward to eliminate
phase shift. This stage ensures that the filtered signal is
shaped roughly like a sinusoid with one cycle per beat.
Fig. 4 shows an example of the signal after this stage of
lowpass filtering.

B.2 Stage 2: Coarse Beat Detection

The lowpass filtered signal from the previous stage con-
tains exactly one peak per heart beat, except in regions
that contain artifact. This stage estimates the location of
each heart beat at the location of the peaks in the filtered
signal from the previous stage. Fig. 4 shows an example of
two beats coarsely located using this method.

B.3 Stage 3: Quantization Error Filter

Although high-precision analog-to-digital (AD) convert-
ers are commercially available, most commercial patient
monitors use relatively low precision (≈ 8 bits) because
the signals are primarily used to display the time aver-

TABLE I

Number of moving average filter taps (length) for various

rates of quantization error, as specified by RQE.

RQE Taps
0.00–0.07 2
0.07–0.25 5
0.25–0.50 10
0.50–0.75 20
0.75–1.00 25

aged mean (≈ 5 s) and trends on the bedside monitor. In
monitoring the ICP signal, the low-resolution problem is
exacerbated by the large amplitude range, approximately
−5 to 100 mmHg, compared to the typical peak-to-peak
amplitude range 4 mmHg. To partially compensate for
quantization error, this stage smooths the signal with a
moving average filter.
The amount of quantization error varies between sub-

jects and among ICP monitors. To estimate the degree of
quantization error, this stage calculates the relative quan-
tization error (RQE), which is defined as the number of
consecutive samples that are equal to each other divided
by the total number of samples. Table I shows the length
of the moving average window used for various ranges of
RQE. Fig. 4 shows an example of a signal with quantization
error before and after filtering.

B.4 Stage 4: Local Peak Detection

The final stage of the algorithm searches for the PTND
components in the signal after quantization error filtering.
Specifically, the algorithm searches from 0.24 s prior to
0.24 s after each coarse beat temporal location for each
PTND component. Since the lowpass filtered signal used to
locate the coarse beats is in phase with the PTND complex,
the PTND components are detected in order, from left to
right. This stage only searches for three peaks and one
notch per coarsely detected beat.

C. Expert Validation

Two experts, CC and SL, visually identified the time
of each percussion component in ICP signals recorded
from three different patients. Each segment was 2.67 min
(20,001 samples) in duration. The segments were screened
for significant artifact. The experts used custom software
written in MATLAB r©(MathWorks, Natick, MA) to visu-
ally identify and record each percussion peak. The tool en-
abled the experts to display the interbeat intervals to find
regions where beats were potentially mislabeled. In regions
of uncertainty, the experts selected peaks that minimized
interbeat interval variability.

III. Results

The percentage accuracy of the algorithm was calculated
by the equation NB−FD

NB , where NB is the total number
of beats detected by the expert and the number of false
detects (FD) is the sum of the false negatives (FN) and
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TABLE II

Results for various acceptance intervals.

Interval (ms) 8.0 24.0 48.0 120.0
DT–CC 99.40 99.40 99.60 99.80
DT–SL 99.30 99.30 99.30 99.70
CC–SL 99.70 99.70 99.70 99.90

TABLE III

Results for acceptance intervals (AI) of 8.0 ms and 96 ms.

NB denotes the number of beats detected by the expert.

FP, false positives; FN, false negatives; FD, false detects.

AI NB FP FN FD Accuracy
DT–CC 8 ms 997 3 3 6 99.40%
DT–SL 8 ms 996 4 3 7 99.30%
CC–SL 8 ms 997 1 2 3 99.70%
DT–CC 96 ms 997 1 1 2 99.80%
DT–SL 96 ms 996 2 1 3 99.70%
CC–SL 96 ms 997 0 1 1 99.90%

false positives (FP): FD = FN+FP. A beat identified by
an expert was counted as a false negative if the algorithm
did not also identify a beat within a specified acceptance
interval. A beat identified by the algorithm was counted
as a false positive if the expert did not also identify a beat
within the same acceptance interval.
The detection algorithm was 99.40% accurate with an

acceptance interval of 8 ms (±1 sample) compared with ex-
pert CC, and 99.30% accurate compared with expert SL.
The expert SL was 99.70% accurate compared with CC.
Table II shows the accuracy of the algorithm and the ex-
perts for four different acceptance intervals. Fig. 5 shows
the accuracy for acceptance intervals ranging from 8 ms to
200 ms. Table III demonstrates how the accuracy was cal-
culated for acceptance intervals of 8 ms and 96 ms. Figs. 6
and 7 show examples of the percussion peaks identified by
the detection algorithm and the two experts over 15 s seg-
ments of two ICP signals with different morphology.
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Fig. 5. Percent accuracy versus acceptance interval for the detection
algorithm (DT) and the two experts.
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Fig. 6. Example of the percussion peaks identified by the two experts
and the detection algorithm (DT).
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Fig. 7. A second example of the percussion peaks identified by the
two experts and the detection algorithm (DT). Note that the signal
morphology is different than Fig. 6.

IV. Discussion

The results show that the algorithm is nearly as accu-
rate as the experts are with one-another and may therefore
be used as an automated method for beat detection and
analysis. The potential applications for this algorithm lie
in further research studies that more closely analyze the
ICP waveform and its components during traumatic brain
injury (TBI) and in other disease states that affect ICP. Ad-
ditionally, more accurate real-time monitoring of the ICP
signal may be possible.
The key advantage of using an automatic algorithm for

beat detection is the gain in efficiency. The experts took
one hour to identify almost 1,000 beats in the ICP signals
spanning a total period of approximately eight minutes.
The algorithm required approximately 1.5 s.
We also briefly investigated segments with significant ar-

tifact due to patient movement and clinical events, such as
the one shown in Fig. 8. These segments are screened from
signal analysis because the peaks cannot be reliably iden-
tified by an expert. Preliminary results indicate that the
algorithm is nearly as consistent as two experts at iden-
tifying the percussion component in regions with signifi-
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Fig. 8. Example of how consistent the two experts, CC and SL, were
as compared with the detection algorithm, DT, on a segment with
significant artifact.

cant artifact. We are currently investigating the use of
other physiologic signals, such as arterial blood pressure
and electrocardiogram, to identify the temporal location of
ICP components in regions with significant artifact.
With the exception of one of the eleven subjects avail-

able for ICP analysis, the waveforms were classified as low
pressure waves (i.e. high brain compliance) where the per-
cussion (P) component is the highest and most easily iden-
tified (see Fig. 1). For this type of low pressure ICP signal,
the algorithm and the experts could only clearly identify
two peaks. In this case, we could not determine whether
the second peak was the tidal or dichrotic component. In
subjects with low brain compliance, the three components
were present and easily identifiable. In this situation, the
tidal component is the peak with the highest amplitude.

V. Conclusion

This paper describes an automatic ICP detection algo-
rithm that locates each of the PTND signal components.
The algorithm is composed of four stages: a lowpass filter,
a coarse beat detector, a quantization error filter, and a
local peak detector. The results show that the algorithm
achieved an accuracy of no less than 99.3% compared to
two experts with an acceptance interval of 8 ms (± 1 sam-
ple).
This detection algorithm may be used to analyze ICP

signals on a beat-to-beat basis rather than using coarse
estimates of the ICP signal properties such as mean and
standard deviation. Having the percussion-to-percussion
interbeat information, the peak-to-valley amplitudes, such
as percussion-to-dichrotic notch, and percussion slopes may
enable researchers to more precisely analyze the ICP signal
properties.
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